Statistics

Stat.binmean

using Gadfly, RDatasets
set_default_plot_size(21cm, 8cm)
p1 = plot(dataset("datasets", "iris"), x="SepalLength", y="SepalWidth",
          Geom.point)
p2 = plot(dataset("datasets", "iris"), x="SepalLength", y="SepalWidth",
          Stat.binmean, Geom.point)
hstack(p1,p2)
SepalLength 4 5 6 7 8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 6.02 6.04 6.06 6.08 6.10 6.12 6.14 6.16 6.18 6.20 6.22 6.24 6.26 6.28 6.30 6.32 6.34 6.36 6.38 6.40 6.42 6.44 6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60 6.62 6.64 6.66 6.68 6.70 6.72 6.74 6.76 6.78 6.80 6.82 6.84 6.86 6.88 6.90 6.92 6.94 6.96 6.98 7.00 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20 7.22 7.24 7.26 7.28 7.30 7.32 7.34 7.36 7.38 7.40 7.42 7.44 7.46 7.48 7.50 7.52 7.54 7.56 7.58 7.60 7.62 7.64 7.66 7.68 7.70 7.72 7.74 7.76 7.78 7.80 7.82 7.84 7.86 7.88 7.90 7.92 7.94 7.96 7.98 8.00 4 6 8 7.6253.0875 7.1400000000000013.2 6.8571428571428563.0714285714285716 6.68000000000000153.0300000000000002 6.5,3.0 6.39999999999999952.9571428571428577 6.2999999999999992.8555555555555556 6.22.8249999999999997 6.052.7916666666666665 5.9000000000000013.0666666666666664 5.7999999999999992.8857142857142857 5.7000000000000013.1 5.60000000000000052.816666666666667 5.4428571428571433.207142857142857 5.2,3.425 5.10000000000000053.477777777777778 4.96253.05625 4.7714285714285713.185714285714286 4.4888888888888893.0777777777777775 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 2.75 3.00 3.25 3.50 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 2.750 2.755 2.760 2.765 2.770 2.775 2.780 2.785 2.790 2.795 2.800 2.805 2.810 2.815 2.820 2.825 2.830 2.835 2.840 2.845 2.850 2.855 2.860 2.865 2.870 2.875 2.880 2.885 2.890 2.895 2.900 2.905 2.910 2.915 2.920 2.925 2.930 2.935 2.940 2.945 2.950 2.955 2.960 2.965 2.970 2.975 2.980 2.985 2.990 2.995 3.000 3.005 3.010 3.015 3.020 3.025 3.030 3.035 3.040 3.045 3.050 3.055 3.060 3.065 3.070 3.075 3.080 3.085 3.090 3.095 3.100 3.105 3.110 3.115 3.120 3.125 3.130 3.135 3.140 3.145 3.150 3.155 3.160 3.165 3.170 3.175 3.180 3.185 3.190 3.195 3.200 3.205 3.210 3.215 3.220 3.225 3.230 3.235 3.240 3.245 3.250 3.255 3.260 3.265 3.270 3.275 3.280 3.285 3.290 3.295 3.300 3.305 3.310 3.315 3.320 3.325 3.330 3.335 3.340 3.345 3.350 3.355 3.360 3.365 3.370 3.375 3.380 3.385 3.390 3.395 3.400 3.405 3.410 3.415 3.420 3.425 3.430 3.435 3.440 3.445 3.450 3.455 3.460 3.465 3.470 3.475 3.480 3.485 3.490 3.495 3.500 2.5 3.0 3.5 SepalWidth SepalLength 4 5 6 7 8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 6.02 6.04 6.06 6.08 6.10 6.12 6.14 6.16 6.18 6.20 6.22 6.24 6.26 6.28 6.30 6.32 6.34 6.36 6.38 6.40 6.42 6.44 6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60 6.62 6.64 6.66 6.68 6.70 6.72 6.74 6.76 6.78 6.80 6.82 6.84 6.86 6.88 6.90 6.92 6.94 6.96 6.98 7.00 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20 7.22 7.24 7.26 7.28 7.30 7.32 7.34 7.36 7.38 7.40 7.42 7.44 7.46 7.48 7.50 7.52 7.54 7.56 7.58 7.60 7.62 7.64 7.66 7.68 7.70 7.72 7.74 7.76 7.78 7.80 7.82 7.84 7.86 7.88 7.90 7.92 7.94 7.96 7.98 8.00 4 6 8 5.9,3.0 6.2,3.4 6.5,3.0 6.3,2.5 6.7,3.0 6.7,3.3 6.8,3.2 5.8,2.7 6.9,3.1 6.7,3.1 6.9,3.1 6.0,3.0 6.4,3.1 6.3,3.4 7.7,3.0 6.1,2.6 6.3,2.8 6.4,2.8 7.9,3.8 7.4,2.8 7.2,3.0 6.4,2.8 6.1,3.0 6.2,2.8 7.2,3.2 6.7,3.3 6.3,2.7 7.7,2.8 5.6,2.8 6.9,3.2 6.0,2.2 7.7,2.6 7.7,3.8 6.5,3.0 6.4,3.2 5.8,2.8 5.7,2.5 6.8,3.0 6.4,2.7 6.5,3.2 7.2,3.6 6.7,2.5 7.3,2.9 4.9,2.5 7.6,3.0 6.5,3.0 6.3,2.9 7.1,3.0 5.8,2.7 6.3,3.3 5.7,2.8 5.1,2.5 6.2,2.9 5.7,2.9 5.7,3.0 5.6,2.7 5.0,2.3 5.8,2.6 6.1,3.0 5.5,2.6 5.5,2.5 5.6,3.0 6.3,2.3 6.7,3.1 6.0,3.4 5.4,3.0 6.0,2.7 5.8,2.7 5.5,2.4 5.5,2.4 5.7,2.6 6.0,2.9 6.7,3.0 6.8,2.8 6.6,3.0 6.4,2.9 6.1,2.8 6.3,2.5 6.1,2.8 5.9,3.2 5.6,2.5 6.2,2.2 5.8,2.7 5.6,3.0 6.7,3.1 5.6,2.9 6.1,2.9 6.0,2.2 5.9,3.0 5.0,2.0 5.2,2.7 6.6,2.9 4.9,2.4 6.3,3.3 5.7,2.8 6.5,2.8 5.5,2.3 6.9,3.1 6.4,3.2 7.0,3.2 5.0,3.3 5.3,3.7 4.6,3.2 5.1,3.8 4.8,3.0 5.1,3.8 5.0,3.5 4.4,3.2 4.5,2.3 5.0,3.5 5.1,3.4 4.4,3.0 4.9,3.6 5.5,3.5 5.0,3.2 4.9,3.1 5.5,4.2 5.2,4.1 5.4,3.4 4.8,3.1 4.7,3.2 5.2,3.4 5.2,3.5 5.0,3.4 5.0,3.0 4.8,3.4 5.1,3.3 4.6,3.6 5.1,3.7 5.4,3.4 5.1,3.8 5.7,3.8 5.1,3.5 5.4,3.9 5.7,4.4 5.8,4.0 4.3,3.0 4.8,3.0 4.8,3.4 5.4,3.7 4.9,3.1 4.4,2.9 5.0,3.4 4.6,3.4 5.4,3.9 5.0,3.6 4.6,3.1 4.7,3.2 4.9,3.0 5.1,3.5 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 2.0 2.5 3.0 3.5 4.0 4.5 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79 3.80 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89 3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 2 3 4 5 SepalWidth

Stat.density

using DataFrames, Gadfly, Distributions
set_default_plot_size(21cm, 8cm)
x = -4:0.1:4
Da = [DataFrame(x=x, ymax=pdf.(Normal(μ),x), u="μ=$μ") for μ in [-1,1]]
Db = [DataFrame(x=randn(200).+μ, u="μ=$μ") for μ in [-1,1]]

p1 = plot(vcat(Da...), x=:x, y=:ymax, ymin=[0.0], ymax=:ymax, color=:u,
    Geom.line, Geom.ribbon, Guide.ylabel("Density"), Theme(alphas=[0.6]),
    Guide.colorkey(title="", pos=[2.5,0.6]), Guide.title("Parametric PDF")
)
p2 = plot(vcat(Db...), x=:x, color=:u, Theme(alphas=[0.6]),
    Stat.density(bandwidth=0.5), Geom.polygon(fill=true, preserve_order=true),
    Coord.cartesian(xmin=-4, xmax=4, ymin=0, ymax=0.4),
    Guide.colorkey(title="", pos=[2.5,0.6]), Guide.title("Kernel PDF")
)
hstack(p1,p2)
x -4 -2 0 2 4 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -4.00 -3.95 -3.90 -3.85 -3.80 -3.75 -3.70 -3.65 -3.60 -3.55 -3.50 -3.45 -3.40 -3.35 -3.30 -3.25 -3.20 -3.15 -3.10 -3.05 -3.00 -2.95 -2.90 -2.85 -2.80 -2.75 -2.70 -2.65 -2.60 -2.55 -2.50 -2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95 -1.90 -1.85 -1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 -5 0 5 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? μ=-1 μ=1 0.0 0.1 0.2 0.3 0.4 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084 0.086 0.088 0.090 0.092 0.094 0.096 0.098 0.100 0.102 0.104 0.106 0.108 0.110 0.112 0.114 0.116 0.118 0.120 0.122 0.124 0.126 0.128 0.130 0.132 0.134 0.136 0.138 0.140 0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156 0.158 0.160 0.162 0.164 0.166 0.168 0.170 0.172 0.174 0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194 0.196 0.198 0.200 0.202 0.204 0.206 0.208 0.210 0.212 0.214 0.216 0.218 0.220 0.222 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250 0.252 0.254 0.256 0.258 0.260 0.262 0.264 0.266 0.268 0.270 0.272 0.274 0.276 0.278 0.280 0.282 0.284 0.286 0.288 0.290 0.292 0.294 0.296 0.298 0.300 0.302 0.304 0.306 0.308 0.310 0.312 0.314 0.316 0.318 0.320 0.322 0.324 0.326 0.328 0.330 0.332 0.334 0.336 0.338 0.340 0.342 0.344 0.346 0.348 0.350 0.352 0.354 0.356 0.358 0.360 0.362 0.364 0.366 0.368 0.370 0.372 0.374 0.376 0.378 0.380 0.382 0.384 0.386 0.388 0.390 0.392 0.394 0.396 0.398 0.400 0.0 0.5 Kernel PDF x -4 -2 0 2 4 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -4.00 -3.95 -3.90 -3.85 -3.80 -3.75 -3.70 -3.65 -3.60 -3.55 -3.50 -3.45 -3.40 -3.35 -3.30 -3.25 -3.20 -3.15 -3.10 -3.05 -3.00 -2.95 -2.90 -2.85 -2.80 -2.75 -2.70 -2.65 -2.60 -2.55 -2.50 -2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95 -1.90 -1.85 -1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 -5 0 5 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? μ=-1 μ=1 0.0 0.1 0.2 0.3 0.4 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084 0.086 0.088 0.090 0.092 0.094 0.096 0.098 0.100 0.102 0.104 0.106 0.108 0.110 0.112 0.114 0.116 0.118 0.120 0.122 0.124 0.126 0.128 0.130 0.132 0.134 0.136 0.138 0.140 0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156 0.158 0.160 0.162 0.164 0.166 0.168 0.170 0.172 0.174 0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194 0.196 0.198 0.200 0.202 0.204 0.206 0.208 0.210 0.212 0.214 0.216 0.218 0.220 0.222 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250 0.252 0.254 0.256 0.258 0.260 0.262 0.264 0.266 0.268 0.270 0.272 0.274 0.276 0.278 0.280 0.282 0.284 0.286 0.288 0.290 0.292 0.294 0.296 0.298 0.300 0.302 0.304 0.306 0.308 0.310 0.312 0.314 0.316 0.318 0.320 0.322 0.324 0.326 0.328 0.330 0.332 0.334 0.336 0.338 0.340 0.342 0.344 0.346 0.348 0.350 0.352 0.354 0.356 0.358 0.360 0.362 0.364 0.366 0.368 0.370 0.372 0.374 0.376 0.378 0.380 0.382 0.384 0.386 0.388 0.390 0.392 0.394 0.396 0.398 0.400 0.0 0.5 Density Parametric PDF

Stat.quantile_bars

using CategoricalArrays
using Gadfly
set_default_plot_size(14cm, 8cm)
n = 400
group = repeat([-1, 1], inner=200)
x = randn(n) .+ group

plot(x=x, color=categorical(group), Guide.colorkey(title="", pos=[3.6,0.7]),
    layer(Stat.density, Geom.line, Geom.polygon(fill=true, preserve_order=true), alpha=[0.4]),
    layer(Stat.quantile_bars(quantiles=[0.05, 0.95]), Geom.segment),
    Guide.title("Density with bars showing the central 90% CI"),
    Guide.ylabel("Density"), Coord.cartesian(xmin=-4, xmax=4)
)
x -4 -2 0 2 4 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -4.00 -3.95 -3.90 -3.85 -3.80 -3.75 -3.70 -3.65 -3.60 -3.55 -3.50 -3.45 -3.40 -3.35 -3.30 -3.25 -3.20 -3.15 -3.10 -3.05 -3.00 -2.95 -2.90 -2.85 -2.80 -2.75 -2.70 -2.65 -2.60 -2.55 -2.50 -2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95 -1.90 -1.85 -1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 -5 0 5 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -1 1 0.0 0.1 0.2 0.3 0.4 0.5 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048 0.050 0.052 0.054 0.056 0.058 0.060 0.062 0.064 0.066 0.068 0.070 0.072 0.074 0.076 0.078 0.080 0.082 0.084 0.086 0.088 0.090 0.092 0.094 0.096 0.098 0.100 0.102 0.104 0.106 0.108 0.110 0.112 0.114 0.116 0.118 0.120 0.122 0.124 0.126 0.128 0.130 0.132 0.134 0.136 0.138 0.140 0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156 0.158 0.160 0.162 0.164 0.166 0.168 0.170 0.172 0.174 0.176 0.178 0.180 0.182 0.184 0.186 0.188 0.190 0.192 0.194 0.196 0.198 0.200 0.202 0.204 0.206 0.208 0.210 0.212 0.214 0.216 0.218 0.220 0.222 0.224 0.226 0.228 0.230 0.232 0.234 0.236 0.238 0.240 0.242 0.244 0.246 0.248 0.250 0.252 0.254 0.256 0.258 0.260 0.262 0.264 0.266 0.268 0.270 0.272 0.274 0.276 0.278 0.280 0.282 0.284 0.286 0.288 0.290 0.292 0.294 0.296 0.298 0.300 0.302 0.304 0.306 0.308 0.310 0.312 0.314 0.316 0.318 0.320 0.322 0.324 0.326 0.328 0.330 0.332 0.334 0.336 0.338 0.340 0.342 0.344 0.346 0.348 0.350 0.352 0.354 0.356 0.358 0.360 0.362 0.364 0.366 0.368 0.370 0.372 0.374 0.376 0.378 0.380 0.382 0.384 0.386 0.388 0.390 0.392 0.394 0.396 0.398 0.400 0.402 0.404 0.406 0.408 0.410 0.412 0.414 0.416 0.418 0.420 0.422 0.424 0.426 0.428 0.430 0.432 0.434 0.436 0.438 0.440 0.442 0.444 0.446 0.448 0.450 0.452 0.454 0.456 0.458 0.460 0.462 0.464 0.466 0.468 0.470 0.472 0.474 0.476 0.478 0.480 0.482 0.484 0.486 0.488 0.490 0.492 0.494 0.496 0.498 0.500 0.0 0.5 Density Density with bars showing the central 90% CI

Stat.dodge

using DataFrames, Gadfly, RDatasets, Statistics
set_default_plot_size(21cm, 8cm)
salaries = dataset("car","Salaries")
salaries.Salary /= 1000.0
salaries.Discipline = ["Discipline $(x)" for x in salaries.Discipline]
df = combine(groupby(salaries, [:Rank, :Discipline]), :Salary.=>mean)
df.label = string.(round.(Int, df.Salary_mean))

p1 = plot(df, x=:Discipline, y=:Salary_mean, color=:Rank,
    Scale.x_discrete(levels=["Discipline A", "Discipline B"]),
    label=:label, Geom.label(position=:centered), Stat.dodge(position=:stack),
    Geom.bar(position=:stack)
)
p2 = plot(df, y=:Discipline, x=:Salary_mean, color=:Rank,
    Coord.cartesian(yflip=true), Scale.y_discrete,
    label=:label, Geom.label(position=:right), Stat.dodge(axis=:y),
    Geom.bar(position=:dodge, orientation=:horizontal),
    Scale.color_discrete(levels=["Prof", "AssocProf", "AsstProf"]),
    Guide.yticks(orientation=:vertical), Guide.ylabel(nothing)
)
hstack(p1, p2)
Salary_mean 0 50 100 150 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0 71.5 72.0 72.5 73.0 73.5 74.0 74.5 75.0 75.5 76.0 76.5 77.0 77.5 78.0 78.5 79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 86.5 87.0 87.5 88.0 88.5 89.0 89.5 90.0 90.5 91.0 91.5 92.0 92.5 93.0 93.5 94.0 94.5 95.0 95.5 96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5 100.0 100.5 101.0 101.5 102.0 102.5 103.0 103.5 104.0 104.5 105.0 105.5 106.0 106.5 107.0 107.5 108.0 108.5 109.0 109.5 110.0 110.5 111.0 111.5 112.0 112.5 113.0 113.5 114.0 114.5 115.0 115.5 116.0 116.5 117.0 117.5 118.0 118.5 119.0 119.5 120.0 120.5 121.0 121.5 122.0 122.5 123.0 123.5 124.0 124.5 125.0 125.5 126.0 126.5 127.0 127.5 128.0 128.5 129.0 129.5 130.0 130.5 131.0 131.5 132.0 132.5 133.0 133.5 134.0 134.5 135.0 135.5 136.0 136.5 137.0 137.5 138.0 138.5 139.0 139.5 140.0 140.5 141.0 141.5 142.0 142.5 143.0 143.5 144.0 144.5 145.0 145.5 146.0 146.5 147.0 147.5 148.0 148.5 149.0 149.5 150.0 0 200 Prof AssocProf AsstProf Rank 133 85 101 120 83 74 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? Discipline B Discipline A Discipline B Discipline A Discipline Discipline A Discipline B Prof AsstProf AssocProf Rank 133 85 101 120 83 74 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 100 200 300 400 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 202 204 206 208 210 212 214 216 218 220 222 224 226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 288 290 292 294 296 298 300 302 304 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 352 354 356 358 360 362 364 366 368 370 372 374 376 378 380 382 384 386 388 390 392 394 396 398 400 0 500 Salary_mean

Stat.func

using DataFrames, Gadfly
set_default_plot_size(14cm, 8cm)
sigmoid(x) = 1 ./ (1 .+ exp.(-x))
npoints = 30
gshift, x = rand([0,2], npoints), range(-9, 9, length=npoints)
y, ye = sigmoid(x+gshift), 0.2*rand(npoints)
df = DataFrame(x=x, y=y, ymin=y-ye, ymax=y+ye, g=gshift)

plot(y=[sigmoid, x->sigmoid(x+2)], xmin=[-10], xmax=[10],
    Geom.line, Stat.func(100), color=[0,2], Guide.xlabel("x"),
    layer(df, x=:x, y=:y, ymin=:ymin, ymax=:ymax, color=:g,
        Geom.point, Geom.yerrorbar, Stat.x_jitter(range=1)),
    Scale.color_discrete_manual("deepskyblue","yellow3", levels=[0,2]),
    Guide.colorkey(title="Function", labels=["Sigmoid(x)", "Sigmoid(x+2)"]),
    Theme(errorbar_cap_length=0mm, key_position=:inside)
)
x -10 -5 0 5 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10.0 -9.9 -9.8 -9.7 -9.6 -9.5 -9.4 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 -8.2 -8.1 -8.0 -7.9 -7.8 -7.7 -7.6 -7.5 -7.4 -7.3 -7.2 -7.1 -7.0 -6.9 -6.8 -6.7 -6.6 -6.5 -6.4 -6.3 -6.2 -6.1 -6.0 -5.9 -5.8 -5.7 -5.6 -5.5 -5.4 -5.3 -5.2 -5.1 -5.0 -4.9 -4.8 -4.7 -4.6 -4.5 -4.4 -4.3 -4.2 -4.1 -4.0 -3.9 -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0 -10 0 10 9.0141046600311480.9998766054240137 8.6927540025953610.9997704844756888 8.1439459673205050.9995731370872474 7.5339262418893150.9992062365897446 6.6189131357520840.9998000496254946 5.547565393392760.9996281141773367 5.0757871084144220.9949124687501931 4.3911606127179690.9987143089615129 4.1168057252619660.9976109861916291 3.1354122445179220.9955650454954019 2.73212982377129960.9917814049431126 2.3910512889365950.8977447634316474 1.2028286926363470.8251626114337308 0.76812760129307690.7172851124799586 0.151905903768971230.9097301769472593 -0.249320961278248680.8441788063113398 -0.8281913982033450.2827148875200414 -1.58342552357296950.610229226597668 -2.10681175390071160.45700301154629586 -3.18894341318910430.05769799230857057 -3.2464350186055960.03186716596599677 -4.1491536301362420.11562972700203106 -4.6106589343894060.009422642306984511 -4.9267611518636330.005087531249807014 -5.8616504657392570.019907474356029627 -6.7756507565596650.0014755595155596822 -7.01153531072300850.00583556787482027 -7.9328016384674130.00042686291275275794 -8.4381743082221340.00022951552431103904 -8.9822199994533580.0009110511944006454 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? Sigmoid(x) Sigmoid(x+2) Function -0.5 0.0 0.5 1.0 1.5 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 -0.50 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31 -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 -0.5 0.0 0.5 1.0 1.5 y

Stat.qq

using Distributions, Gadfly, RDatasets
set_default_plot_size(21cm, 8cm)
iris, geyser = dataset.("datasets", ["iris", "faithful"])
df = combine(groupby(iris, :Species), :SepalLength=>(x->fit(Normal, x))=>:d)
ds2 = fit.([Normal, Uniform], [geyser.Eruptions])

yeqx(x=4:6) = layer(x=x, Geom.abline(color="gray80"))
xylabs = [Guide.xlabel("Theoretical q"), Guide.ylabel("Sample q")]
p1 = plot(df, x=:d, y=iris[:,1], color=:Species, Stat.qq, yeqx(4:8),
    xylabs..., Guide.title("3 Samples, 1 Distribution"))
p2 = plot(geyser, x=ds2, y=:Eruptions, color=["Normal","Uniform"], Stat.qq,
    yeqx(0:6), xylabs..., Guide.title("1 Sample, 2 Distributions"),
  Theme(discrete_highlight_color=c->nothing, alphas=[0.5], point_size=2pt)
)
hstack(p1, p2)
Theoretical q 0 2 4 6 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20 6.25 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05 7.10 7.15 7.20 7.25 7.30 7.35 7.40 7.45 7.50 7.55 7.60 7.65 7.70 7.75 7.80 7.85 7.90 7.95 8.00 0 10 Normal Uniform Color 5.0935661764705885.0835606617647064 5.0806985294117645.050187500000002 5.0678308823529415.01680330882353 5.0549632352941174.967362132352942 5.0420955882352934.933 5.0292279411764714.933 5.0163602941176464.917288602941177 5.0034926470588234.9 4.9906254.8920312500000005 4.9777573529411764.867652573529412 4.9648897058823534.8421562499999995 4.9520220588235294.833 4.9391544117647064.8257352941176475 4.9262867647058824.817 4.91341911764705854.80940625 4.9005514705882354.8 4.8876838235294114.8 4.8748161764705884.8 4.8619485294117644.8 4.8490808823529414.8 4.8362132352941174.792781249999999 4.8233455882352934.776264705882354 4.8104779411764714.75990625 4.7976102941176464.74296875 4.7847426470588234.72603125 4.7718754.7095 4.7590073529411764.7 4.7461397058823534.7 4.7332720588235294.7 4.7204044117647064.7 4.7075367647058824.7 4.69466911764705854.687321691176471 4.6818014705882354.667 4.6689338235294114.66059375 4.6560661764705884.64365625 4.6431985294117644.633 4.6303308823529424.633 4.6174632352941174.627205882352941 4.6045955882352934.61090625 4.5917279411764714.6 4.5788602941176464.6 4.5659926470588234.6 4.5531254.59415625 4.5402573529411764.583 4.5273897058823534.583 4.5145220588235294.583 4.5016544117647064.577735294117647 4.4887867647058824.567 4.47591911764705854.567 4.4630514705882354.56159375 4.4501838235294114.54465625 4.4373161764705884.533 4.4244485294117644.533 4.4115808823529424.533 4.3987132352941174.533 4.3858455882352934.5282647058823535 4.3729779411764714.512031250000001 4.3601102941176464.5 4.3472426470588234.5 4.3343754.5 4.3215073529411764.5 4.3086397058823534.5 4.2957720588235294.5 4.2829044117647064.5 4.2700367647058824.49553125 4.25716911764705854.478852941176471 4.2443014705882354.467 4.2314338235294114.46271875 4.2185661764705884.45 4.2056985294117644.45 4.1928308823529424.44590625 4.1799632352941174.433 4.1670955882352934.429264705882353 4.1542279411764714.417 4.1413602941176464.417 4.1284926470588244.417 4.1156254.41328125 4.1027573529411764.396343750000001 4.0898897058823534.379617647058823 4.07702205882352954.367 4.0641544117647064.367 4.0512867647058824.366799632352941 4.03841911764705854.36285294117647 4.0255514705882354.35 4.0126838235294114.35 3.9998161764705884.35 3.98694852941176464.34690625 3.9740808823529414.333 3.96121323529411744.333 3.94834558823529364.333 3.935477941176474.333 3.9226102941176474.330382352941177 3.90974264705882354.3142812500000005 3.89687499999999964.3 3.88400735294117634.29740625 3.8711397058823534.283 3.85827205882352954.280676470588236 3.84540441176470574.267 3.8325367647058824.264656250000001 3.81966911764705854.25 3.8068014705882354.25 3.79393382352941134.25 3.7810661764705884.24790625 3.76819852941176464.233 3.7553308823529414.233 3.7424632352941184.229299632352941 3.72959558823529364.19815625 3.716727941176474.181323529411765 3.7038602941176474.167 3.69099264705882354.167 3.67812499999999964.167 3.66525735294117634.16546875 3.6523897058823534.15 3.63952205882352954.15 3.62665441176470574.15 3.6137867647058824.1487187500000005 3.60091911764705854.133 3.5880514705882354.131911764705882 3.57518382352941184.117 3.56231617647058844.1159687499999995 3.54944852941176464.1 3.5365808823529414.09909375 3.52371323529411744.083 3.5108455882352944.083 3.497977941176474.083 3.4851102941176474.083 3.4722426470588234.082441176470589 3.45937499999999964.067 3.44650735294117634.066531250000001 3.4336397058823534.04959375 3.42077205882352954.033 3.4079044117647064.032454044117647 3.3950367647058824.0 3.38216911764705854.0 3.3693014705882354.0 3.35643382352941184.0 3.34356617647058844.0 3.33069852941176464.0 3.31783088235294083.967303308823529 3.30496323529411743.9660128676470587 3.2920955882352943.9502647058823532 3.27922794117647073.95 3.2663602941176473.917788602941177 3.25349264705882353.917 3.24062499999999963.917 3.22775735294117633.8841875 3.2148897058823533.8512738970588236 3.20202205882352953.85 3.18915441176470573.8337812500000004 3.17628676470588233.833 3.16341911764705853.833 3.1505514705882353.833 3.13768382352941183.833 3.12481617647058843.818029411764706 3.11194852941176463.7704007352941176 3.09908088235294083.767 3.08621323529411743.75128125 3.0733455882352943.7343437500000003 3.06047794117647073.7183235294117645 3.0476102941176473.6859375 3.03474264705882353.607476102941177 3.02187499999999963.6 3.00900735294117633.6 2.9961397058823533.6 2.98327205882352953.5704577205882355 2.97040441176470573.567 2.95753676470588233.507512867647059 2.94466911764705853.5 2.9318014705882353.455974264705883 2.91893382352941183.421064338235294 2.90606617647058843.373341911764706 2.8931985294117653.3374375 2.88033088235294083.333 2.86746323529411743.3192058823529416 2.8545955882352943.1023860294117647 2.84172794117647072.9242518382352936 2.8288602941176472.88553125 2.81599264705882352.8126636029411767 2.80312499999999962.65909375 2.79025735294117632.6195588235294114 2.7773897058823532.5049227941176464 2.76452205882352952.4280404411764707 2.75165441176470572.417 2.73878676470588232.40296875 2.72591911764705852.4 2.7130514705882352.38609375 2.70018382352941182.369970588235294 2.68731617647058842.35321875 2.6744485294117652.33628125 2.66158088235294082.3201470588235296 2.64871323529411742.30340625 2.6358455882352942.28646875 2.62297794117647072.2703235294117645 2.6101102941176472.2535937500000003 2.59724264705882352.25 2.5843752.23671875 2.57150735294117632.233 2.5586397058823532.2206176470588237 2.54577205882352952.20390625 2.53290441176470572.2 2.52003676470588232.2 2.5071691176470592.18709375 2.4943014705882352.1709117647058824 2.48143382352941182.167 2.46856617647058842.15428125 2.45569852941176462.13734375 2.4428308823529412.1085533088235295 2.42996323529411742.1 2.4170955882352942.1 2.40422794117647072.08759375 2.39136029411764732.083 2.37849264705882352.0714411764705885 2.3656252.0425625 2.35275735294117632.033 2.3398897058823532.0216176470588234 2.32702205882352952.017 2.31415441176470572.017 2.30128676470588232.00509375 2.2884191176470592.0 2.2755514705882352.0 2.26268382352941182.0 2.24981617647058841.98834375 2.23694852941176461.983 2.2240808823529411.983 2.21121323529411741.9722058823529414 2.1983455882352941.967 2.18547794117647071.967 2.17261029411764731.95571875 2.15974264705882351.93878125 2.1468751.933 2.13400735294117631.9225588235294118 2.1211397058823531.917 2.10827205882352951.8950624999999999 2.09540441176470571.883 2.08253676470588231.883 2.0696691176470591.883 2.0568014705882351.8729117647058824 2.04393382352941181.867 2.03106617647058841.867 2.01819852941176461.867 2.0053308823529411.867 1.99246323529411761.867 1.97959558823529421.867 1.96672794117647071.867 1.9538602941176471.85678125 1.94099264705882351.85 1.9281251.8399062499999999 1.91525735294117651.833 1.9023897058823531.833 1.88952205882352951.833 1.8766544117647061.833 1.86378676470588231.833 1.8509191176470591.833 1.83805147058823541.8239117647058825 1.82518382352941181.817 1.81231617647058841.817 1.79944852941176481.80753125 1.78658088235294121.8 1.77371323529411761.8 1.76084558823529421.8 1.74797794117647071.7907812499999998 1.7351102941176471.783 1.72224264705882371.7653474264705882 1.7093751.75 1.69650735294117651.75 1.6836397058823531.75 1.67077205882352951.75 1.6579044117647061.75 1.64503676470588231.7412812500000001 1.6321691176470591.7161966911764706 1.61930147058823541.6833180147058824 1.60643382352941181.6333768382352942 6.796983625202855.0835606617647064 6.3835434404645325.050187500000002 6.1739853104291995.01680330882353 6.028566412525754.967362132352942 5.9155825786507774.933 5.82239380266739654.933 5.7426223436581064.917288602941177 5.6725814740158464.9 5.60993987715886364.8920312500000005 5.553125808262554.867652573529412 5.501027348176954.8421562499999995 5.4528277630190344.833 5.4079087706903114.8257352941176475 5.365790585893294.817 5.3260931082494684.80940625 5.2885098729125364.8 5.2527900251737164.8 5.2187255171784594.8 5.1861418056513654.8 5.154890958103144.8 5.1248464538584064.792781249999999 5.0958992018338934.776264705882354 5.0679544475804354.75990625 5.0409293407337214.74296875 5.0147510000509074.72603125 4.9893549582970444.7095 4.9646839005844864.7 4.9406866319084134.7 4.9173172254959764.7 4.8945343151246164.7 4.8723005030568974.7 4.850581861561824.687321691176471 4.8293475107508594.667 4.80856925907380454.66059375 4.7882212955944134.64365625 4.7682799253133214.633 4.74872334048120154.633 4.729531422162344.627205882352941 4.7106855673518534.61090625 4.69216853778128054.6 4.6739643272143514.6 4.6560580445732064.6 4.6384358106723934.59415625 4.6210846666947174.583 4.60399249283560154.583 4.58714793578389654.583 4.5705403439068264.577735294117647 4.5541597091729534.567 4.5379966149858854.567 4.522042189217894.56159375 4.50628806183060254.54465625 4.4907263265529064.533 4.4753495061563044.533 4.46015052092790754.533 4.4451226599922174.533 4.430259555176594.5282647058823535 4.4155551571528474.512031250000001 4.4010037136197974.5 4.3865997493194644.5 4.37233804770391554.5 4.3582136340907154.5 4.3442217601632434.5 4.3303578896881364.5 4.3166176853360594.5 4.3029969965042734.49553125 4.2894918480502084.478852941176471 4.2760984298547364.467 4.2628130871421934.46271875 4.2496323114915774.45 4.2365527324799024.45 4.2235711099044914.44590625 4.2106843265361274.433 4.19788938135961854.429264705882353 4.1851833832623964.417 4.172563545135424.417 4.1600271783539734.417 4.1475716876088464.41328125 4.135194566061024.396343750000001 4.1228933907953674.379617647058823 4.1106658185514.367 4.0985095817078094.367 4.0864224845104814.366799632352941 4.0744023995128494.36285294117647 4.06244726422683664.35 4.050555077961574.35 4.0387238988393434.35 4.0269518409762414.34690625 4.0152370718161524.333 4.003577809607774.333 3.99197232101501784.333 3.98041891885201434.333 3.96891595993444.330382352941177 3.95746184303942534.3142812500000005 3.946055006967774.3 3.93469392870056644.29740625 3.9233771216455744.283 3.9121031339668614.280676470588236 3.90087054699276744.267 3.8896779736972644.264656250000001 3.87852405725016254.25 3.86740746963192944.25 3.85632691030915584.25 3.8452811049669694.24790625 3.83426880429492824.233 3.8232887828231644.233 3.81233983780571654.229299632352941 3.80142078814822474.19815625 3.79053047337729154.181323529411765 3.7796677526489974.167 3.7688315037942024.167 3.75802062239840634.167 3.747234020914054.16546875 3.73647062780327844.15 3.72572938670929074.15 3.7150092556544864.15 3.70430920626373264.1487187500000005 3.69362822301115434.133 3.6829653024889114.131911764705882 3.6723194526965374.117 3.66168969234945244.1159687499999995 3.6510750502053274.1 3.64047456440705464.09909375 3.6298872818411124.083 3.61931225751016374.083 3.6087485539187944.083 3.5981952404712914.083 3.58765139288046254.082441176470589 3.5771160925864694.067 3.5665884261847154.066531250000001 3.55606748486185434.04959375 3.54555236383898944.033 3.53504216182117234.032454044117647 3.5245359804523284.0 3.514032923774744.0 3.5035320976922514.0 3.49303260943633954.0 3.48253356703424774.0 3.4720340787783364.0 3.4615332526958473.967303308823529 3.4510301960182593.9660128676470587 3.4405240146494153.9502647058823532 3.4300138126315983.95 3.4194986916087333.917788602941177 3.40897775028587223.917 3.39845008388411833.917 3.38791478359012473.8841875 3.37737093599929633.8512738970588236 3.36681762255179343.85 3.35625391896042353.8337812500000004 3.34567889462947533.833 3.33509161206353263.833 3.324491126265263.833 3.3138764841211353.833 3.303246723774053.818029411764706 3.2926008739816763.7704007352941176 3.2819379534594333.767 3.2712569702068543.75128125 3.26055692081610143.7343437500000003 3.2498367897612973.7183235294117645 3.23909554866730883.6859375 3.22833215555653743.607476102941177 3.2175455540721813.6 3.20673467267638523.6 3.19589842382159043.6 3.18503570309329563.5704577205882355 3.1741453883223623.567 3.1632263386648713.507512867647059 3.15227739364742333.5 3.1412973721756593.455974264705883 3.13028507150361833.421064338235294 3.11923926616143143.373341911764706 3.1081587068386583.3374375 3.09704211922042473.333 3.08588820277332283.3192058823529416 3.07469562947782033.1023860294117647 3.0634630425037272.9242518382352936 3.05218905482501322.88553125 3.04087224777002072.8126636029411767 3.02951116950281742.65909375 3.0181043334311622.6195588235294114 3.00665021653618722.5049227941176464 2.9951472576185732.4280404411764707 2.98359385545556942.417 2.9719883668628172.40296875 2.96032910465443562.4 2.9486143354943462.38609375 2.93684227763124462.369970588235294 2.92501109850901742.35321875 2.91311891224375062.33628125 2.9011637769577392.3201470588235296 2.8891436919601062.30340625 2.87705659476277782.28646875 2.86490035791958732.2703235294117645 2.85267278567522052.2535937500000003 2.84037161040956752.25 2.82799448886174032.23671875 2.8155389981166142.233 2.8030026313351682.2206176470588237 2.79038279320819042.20390625 2.7776767951109682.2 2.76488184993446052.2 2.75199506656609662.18709375 2.7390134439906852.1709117647058824 2.7259338649790112.167 2.7127530893283942.15428125 2.6994677466158512.13734375 2.6860743284203792.1085533088235295 2.6725691799663142.1 2.65894849113452822.1 2.64520828678245132.08759375 2.6313444163073442.083 2.6173525423798722.0714411764705885 2.60322812876667162.0425625 2.5889664271511232.033 2.57456246285078952.0216176470588234 2.5600110193177412.017 2.54530662129399682.017 2.53044351647837032.00509375 2.51541565554267972.0 2.5002166703142832.0 2.4848398499176812.0 2.4692781146399851.98834375 2.4535239872526971.983 2.4375695614847021.983 2.42140646729763451.9722058823529414 2.40502583256376121.967 2.38841824068669071.967 2.37157368363498571.95571875 2.35448150977587021.93878125 2.3371303657981941.933 2.3195081318973811.9225588235294118 2.30160184925623531.917 2.28339763868930671.8950624999999999 2.2648806091187341.883 2.24603475430824731.883 2.22684283598938571.883 2.20728625115726641.8729117647058824 2.1873448808761741.867 2.16699691739678271.867 2.1462186657197281.867 2.1249843149087671.867 2.10326567341368961.867 2.08103186134597041.867 2.0582489509746111.867 2.0348795445621741.85678125 2.0108822758861011.85 1.9862112181735431.8399062499999999 1.96081517641967971.833 1.9346368357368671.833 1.90761172889015151.833 1.87966697463669471.833 1.8507197226121821.833 1.8206752183674471.833 1.78942437081922231.8239117647058825 1.75684065929212821.817 1.72277615129687131.817 1.6870563035580511.80753125 1.64947306822111871.8 1.60977559057729751.8 1.56765740578027681.8 1.52273841345155341.7907812499999998 1.47453882829363711.783 1.42244036820803781.7653474264705882 1.36562629931171961.75 1.30298470245474141.75 1.23294383281248091.75 1.15317237380319071.75 1.05998359781980871.75 0.94699976394484021.7412812500000001 0.80158086604138971.7161966911764706 0.59202273600605791.6833180147058824 0.178582551267737261.6333768382352942 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 1 2 3 4 5 6 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 0 10 Sample q 1 Sample, 2 Distributions Theoretical q 4 5 6 7 8 9 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 6.02 6.04 6.06 6.08 6.10 6.12 6.14 6.16 6.18 6.20 6.22 6.24 6.26 6.28 6.30 6.32 6.34 6.36 6.38 6.40 6.42 6.44 6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60 6.62 6.64 6.66 6.68 6.70 6.72 6.74 6.76 6.78 6.80 6.82 6.84 6.86 6.88 6.90 6.92 6.94 6.96 6.98 7.00 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20 7.22 7.24 7.26 7.28 7.30 7.32 7.34 7.36 7.38 7.40 7.42 7.44 7.46 7.48 7.50 7.52 7.54 7.56 7.58 7.60 7.62 7.64 7.66 7.68 7.70 7.72 7.74 7.76 7.78 7.80 7.82 7.84 7.86 7.88 7.90 7.92 7.94 7.96 7.98 8.00 8.02 8.04 8.06 8.08 8.10 8.12 8.14 8.16 8.18 8.20 8.22 8.24 8.26 8.28 8.30 8.32 8.34 8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50 8.52 8.54 8.56 8.58 8.60 8.62 8.64 8.66 8.68 8.70 8.72 8.74 8.76 8.78 8.80 8.82 8.84 8.86 8.88 8.90 8.92 8.94 8.96 8.98 9.00 3 6 9 setosa versicolor virginica Species 8.2958354558213937.800666666666666 8.0524096556878737.7 7.9275803884085567.7 7.840250011506117.7 7.7719382883646797.6530000000000005 7.7152572044160237.507333333333332 7.6664711067256177.354333333333332 7.6234167407116947.255000000000001 7.5847240589353497.2 7.5494681184702967.2 7.51699374833789957.157 7.4868191404714867.057666666666665 7.4585791494407576.958333333333334 7.4319901182266596.9 7.4068270892253036.9 7.3829084970951256.9 7.360085568971436.861000000000002 7.3382347903727766.8 7.3172524277222196.8 7.2970504665497076.763 7.277553546463116.7 7.2586966121113656.7 7.2404230877025596.7 7.2226834405303476.7 7.2054340377374146.7 7.1886362270325766.7 7.1722555904976216.7 7.1562613336381196.668333333333334 7.1406257811702736.6 7.1253239578256156.569666666666667 7.1103332374543526.5 7.0956330474315936.5 7.0812046181738476.5 7.0670307697046266.5 7.0530957288438576.473000000000001 7.0393849718621236.4 7.0258850884291286.4 7.01258366346300656.4 6.9994691741027216.4 6.9865308995166726.4 6.97375884165463146.4 6.9611436553681116.377666666666668 6.9486765865825246.3 6.93634941741529956.3 6.9241544173070276.3 6.912084299375336.3 6.900132181319266.3 6.888291550300256.3 6.87655623130773556.3 6.8649203585863996.3 6.85337834975993856.283666666666668 6.8419248823352026.2 6.8305548723120536.2 6.8192634546596266.2 6.8080459654497186.186333333333334 6.7968979254638646.1 6.785815025112696.1 6.77479311052518356.1 6.76382817068187156.1 6.752916325480046.1 6.742053814631396.090333333333334 6.73123698730309356.0 6.7204622924224546.0 6.7097262695733266.0 6.6990255404194286.0 6.6883568005956626.0 6.6777168120138375.994333333333333 6.6671023955336785.9 6.6565104239539475.9 6.6459378152818425.896333333333334 6.635381526241745.8 6.624838545986775.8 6.6143058899787555.8 6.6037805940036985.8 6.5932597082913875.8 6.58274029170860955.8 6.5722194059962985.8 6.5616941100212425.701666666666667 6.5511614540132275.7 6.5406184737582575.7 6.5300621847181555.7 6.5194895760460495.7 6.5088976044663195.7 6.498283187986165.7 6.4876431994043345.7 6.47697445958056855.606999999999998 6.466273730426675.6 6.4555377075775435.6 6.4447630126969035.6 6.4339461853686065.6 6.4230836745199565.6 6.4121718293181255.511 6.4012068894748135.5 6.39018497488730655.5 6.3791020745361325.5 6.3679540345502785.5 6.3567365453403715.5 6.34544512768794365.5 6.3340751176647955.415666666666667 6.3226216502400585.4 6.3110796414135975.4 6.2994437686922615.4 6.2877084496997465.4 6.2758678186807365.4 6.2639157006246675.3196666666666665 6.251845582692975.2203333333333335 6.2396505825846975.2 6.2273234134174735.2 6.2148563446318875.2 6.2022411583453655.122999999999999 6.1894691004833255.1 6.17653082589727555.1 6.163416336536995.1 6.1501149115708695.1 6.1366150281378735.1 6.1229042711561395.1 6.108969230295375.1 6.094795381826155.1 6.0803669525684035.029 6.0656667625456455.0 6.05067604217438155.0 6.0353742188297245.0 6.0197386663618785.0 6.0037444095023755.0 5.9873637729674215.0 5.9705659622625825.0 5.953316559469655.0 5.9355769122974385.0 5.9173033878886324.935666666666666 5.8984464535368874.9 5.878949533450294.9 5.8587475722777774.9 5.8377652096272214.9 5.8159144310285674.9 5.7930915029048724.839666666666667 5.7691729107746934.8 5.7440098817733384.8 5.717420850559244.8 5.6891808595285114.8 5.6590062516620974.743 5.6265318815297014.7 5.5912759410646484.644333333333333 5.5525832592883014.6 5.5095288932743794.6 5.4607427955839744.6 5.4040617116353174.547 5.3357499884938874.447666666666667 5.2484196115914394.4 5.1235903443121244.4 4.8801645441786054.349666666666667 7.3223243852318657.800666666666666 7.1247250664161247.7 7.0233957160796717.7 6.9525058474692777.7 6.8970542480395037.6530000000000005 6.8510437447491837.507333333333332 6.8114419454903757.354333333333332 6.7764928423479457.255000000000001 6.7450843081746317.2 6.7164655265324157.2 6.6901046666169437.157 6.6656106238463527.057666666666665 6.6426869937793116.958333333333334 6.621103519665256.9 6.6006775936242096.9 6.5812618311645096.9 6.5627354668754776.861000000000002 6.5449982386756756.8 6.5279659415049536.8 6.5115671301865126.763 6.4957406314094576.7 6.4804336369133356.7 6.4656002216649836.7 6.4512001778103966.7 6.4371980866598596.7 6.4235625724660016.7 6.41026569670632456.7 6.3972824621491496.668333333333334 6.3845904035618536.6 6.3721692474317936.569666666666667 6.3600006271282176.5 6.3480678429559336.5 6.3363556588269376.5 6.3248501290064366.5 6.3135384497175236.473000000000001 6.3024088314167816.4 6.29145038835532856.4 6.280653042670766.4 6.27000744075515656.4 6.2595048800428086.4 6.2491372446811086.4 6.2388969488062146.377666666666668 6.22877688635476.3 6.2187703865135416.3 6.2088711740511366.3 6.1990733338878476.3 6.1893712793603936.3 6.179759723714196.3 6.1702336544243516.3 6.1607883100019386.3 6.1514191589890916.283666666666668 6.1421218808864216.2 6.13289234878976.2 6.1237266135415886.2 6.1146208892285336.186333333333334 6.10557153987391656.1 6.09657506719643656.1 6.0876280993181686.1 6.0787273803199946.1 6.0698697605536346.1 6.06105218762938156.090333333333334 6.0522716980073026.0 6.0435254091271016.0 6.0348105120183556.0 6.0261242643384376.0 6.0174639837903516.0 6.0088270418769515.994333333333333 6.0002108579516835.9 5.9916128935291685.9 5.983030646821685.896333333333334 5.9744616474699185.8 5.9659034514384085.8 5.9573536360475875.8 5.9488097951159195.8 5.9402695341865075.8 5.9317304658134935.8 5.9231902048840815.8 5.91464636395241255.701666666666667 5.90609654856159155.7 5.89753835253008155.7 5.888969353178325.7 5.8803871064708325.7 5.8717891420483175.7 5.8631729581230495.7 5.8545360162096495.7 5.8458757356615635.606999999999998 5.8371894879816455.6 5.8284745908728995.6 5.8197283019926985.6 5.8109478123706185.6 5.8021302394463665.6 5.7932726196800065.511 5.78437190068183155.5 5.7754249328035635.5 5.7664284601260835.5 5.7573791107714675.5 5.7482733864584125.5 5.73910765121035.5 5.7298781191135795.415666666666667 5.7205808410109095.4 5.7112116899980635.4 5.7017663455756485.4 5.692240276285815.4 5.6826287206396075.4 5.67292666611215255.3196666666666665 5.66312882594886355.2203333333333335 5.6532296134864595.2 5.64322311364535.2 5.6331030511937875.2 5.62286275531889155.122999999999999 5.6124951199571925.1 5.6019925592448435.1 5.591346957329245.1 5.5805496116446715.1 5.56959116858321855.1 5.5584615502824775.1 5.5471498709935645.1 5.5356443411730635.1 5.5239321570440675.029 5.5119993728717835.0 5.4998307525682075.0 5.4874095964381475.0 5.4747175378508515.0 5.4617343032936755.0 5.4484374275339995.0 5.4348019133401415.0 5.4207998221896045.0 5.4063997783350175.0 5.3915663630866654.935666666666666 5.3762593685905434.9 5.3604328698134884.9 5.3440340584950474.9 5.3270017613243254.9 5.3092645331245234.9 5.2907381688354914.839666666666667 5.2713224063757914.8 5.250896480334754.8 5.2293130062206894.8 5.20638937615364754.8 5.1818953333830574.743 5.15553447346758454.7 5.1269156918253694.644333333333333 5.0955071576520544.6 5.0605580545096254.6 5.0209562552508174.6 4.97494575196049654.547 4.91949415253072254.447666666666667 4.8486042839203274.4 4.7472749335838764.4 4.5496756147681364.349666666666667 5.9527112830820437.800666666666666 5.817772082239167.7 5.7485749734724067.7 5.7001647751201367.7 5.6622972634436887.6530000000000005 5.6308770106736667.507333333333332 5.6038332173248297.354333333333332 5.5799667178020637.255000000000001 5.5585180482095047.2 5.5389744812223197.2 5.5209728332822177.157 5.5042460217897297.057666666666665 5.4885916342128736.958333333333334 5.473852429817746.9 5.4599037069528386.9 5.44664481777361956.9 5.43399329242085656.861000000000002 5.4218806626162926.8 5.4102494253098586.8 5.3990507910870996.763 5.38824298511936656.7 5.3777899450127916.7 5.3676603088815566.7 5.35782661906174256.7 5.3482646883764226.7 5.3389530905458826.7 5.3298727465473736.7 5.3210065859451976.668333333333334 5.3123392673882056.6 5.303856946235586.569666666666667 5.2955470800428926.5 5.28739826470441356.5 5.2794000956015896.5 5.2715430492890966.5 5.2638183821567146.473000000000001 5.2562180432072216.4 5.2487345986383996.4 5.2413611663480866.4 5.2340913588224716.4 5.2269192331399446.4 5.2198392470411936.4 5.2128462201925456.377666666666668 5.20593529991276.3 5.1991019307498266.3 5.1923418273918976.3 5.1856509504721586.3 5.1790254848970996.3 5.1724618203787776.3 5.1659565338987996.3 5.1595063738694796.3 5.1531082457897536.283666666666668 5.1467591992206286.2 5.1404564159279066.2 5.1341971990594966.2 5.127978963241366.186333333333334 5.12179922549034756.1 5.1156555968544826.1 5.1095457747017746.1 5.1034675355876976.1 5.0974187286393436.1 5.0913972694010046.090333333333334 5.0854011340918676.0 5.0794283542315486.0 5.07347701159367856.0 5.0675452334515466.0 5.0616311880831836.0 5.0557330805061665.994333333333333 5.0498491484149065.9 5.043977658295395.9 5.0381169016941765.896333333333334 5.03226519162007255.8 5.0264208590582515.8 5.0205822495776825.8 5.0147477200137265.8 5.0089156352084175.8 5.0030843647915815.8 4.9972522799862735.8 4.99141775042231655.701666666666667 4.9855791409417485.7 4.9797348083799265.7 4.9738830983058235.7 4.9680223417046095.7 4.96215085158509255.7 4.95626691949383255.7 4.9503688119168165.7 4.9444547665484535.606999999999998 4.938522988406325.6 4.93257164576845055.6 4.9265988659081325.6 4.9206027305989945.6 4.9145812713606565.6 4.9085324644123025.511 4.9024542252982255.5 4.8963444031455165.5 4.8902007745096515.5 4.88402103675863855.5 4.8778028009405025.5 4.8715435840720935.5 4.8652408007793715.415666666666667 4.8588917542102465.4 4.8524936261305215.4 4.8460434661011995.4 4.8395381796212225.4 4.83297451510295.4 4.8263490495278415.3196666666666665 4.8196581726081025.2203333333333335 4.8128980692501725.2 4.80606470008729855.2 4.7991537798074545.2 4.79216075295880555.122999999999999 4.7850807668600545.1 4.7779086411775275.1 4.7706388336519135.1 4.76326540136165.1 4.7557819567927775.1 4.7481816178432855.1 4.7404569507109035.1 4.732599904398415.1 4.7246017352955855.029 4.7164529199571065.0 4.7081430537644185.0 4.6996607326117945.0 4.6909934140548025.0 4.68212725345262555.0 4.6730469094541175.0 4.6637353116235775.0 4.6541733809382565.0 4.6443396911184435.0 4.6342100549872084.935666666666666 4.6237570148806324.9 4.61294920891294.9 4.6017505746901414.9 4.5901193373837064.9 4.5780067075791424.9 4.5653551822263794.839666666666667 4.55209629304716054.8 4.5381475701822594.8 4.5234083657871264.8 4.5077539782102694.8 4.4910271667177824.743 4.4730255187776794.7 4.4534819517904944.644333333333333 4.4320332821979364.6 4.408166782675174.6 4.3811229893263334.6 4.3497027365563114.547 4.3118352248798634.447666666666667 4.2634250265275924.4 4.1942279177608394.4 4.05928871691795754.349666666666667 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 4 5 6 7 8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 6.02 6.04 6.06 6.08 6.10 6.12 6.14 6.16 6.18 6.20 6.22 6.24 6.26 6.28 6.30 6.32 6.34 6.36 6.38 6.40 6.42 6.44 6.46 6.48 6.50 6.52 6.54 6.56 6.58 6.60 6.62 6.64 6.66 6.68 6.70 6.72 6.74 6.76 6.78 6.80 6.82 6.84 6.86 6.88 6.90 6.92 6.94 6.96 6.98 7.00 7.02 7.04 7.06 7.08 7.10 7.12 7.14 7.16 7.18 7.20 7.22 7.24 7.26 7.28 7.30 7.32 7.34 7.36 7.38 7.40 7.42 7.44 7.46 7.48 7.50 7.52 7.54 7.56 7.58 7.60 7.62 7.64 7.66 7.68 7.70 7.72 7.74 7.76 7.78 7.80 7.82 7.84 7.86 7.88 7.90 7.92 7.94 7.96 7.98 8.00 4 6 8 Sample q 3 Samples, 1 Distribution

Stat.smooth

using Compose, Gadfly, RDatasets
set_default_plot_size(21cm,8cm)
salaries = dataset("car","Salaries")
salaries.Salary /= 1000.0
salaries.Discipline = ["Discipline $(x)" for x in salaries.Discipline]

p = plot(salaries[salaries.Rank.=="Prof",:], x=:YrsService, y=:Salary,
    color=:Sex, xgroup = :Discipline,
    Geom.subplot_grid(Geom.point,
  layer(Stat.smooth(method=:lm, levels=[0.95, 0.99]), Geom.line, Geom.ribbon)),
    Scale.xgroup(levels=["Discipline A", "Discipline B"]),
    Guide.colorkey(title="", pos=[0.43w, -0.4h]),
    Theme(point_size=2pt, alphas=[0.5])
)
YrsService by Discipline Discipline B Discipline A 0 10 20 30 40 50 60 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 31.6 31.8 32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4 33.6 33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2 35.4 35.6 35.8 36.0 36.2 36.4 36.6 36.8 37.0 37.2 37.4 37.6 37.8 38.0 38.2 38.4 38.6 38.8 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4 40.6 40.8 41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 43.6 43.8 44.0 44.2 44.4 44.6 44.8 45.0 45.2 45.4 45.6 45.8 46.0 46.2 46.4 46.6 46.8 47.0 47.2 47.4 47.6 47.8 48.0 48.2 48.4 48.6 48.8 49.0 49.2 49.4 49.6 49.8 50.0 50.2 50.4 50.6 50.8 51.0 51.2 51.4 51.6 51.8 52.0 52.2 52.4 52.6 52.8 53.0 53.2 53.4 53.6 53.8 54.0 54.2 54.4 54.6 54.8 55.0 55.2 55.4 55.6 55.8 56.0 56.2 56.4 56.6 56.8 57.0 57.2 57.4 57.6 57.8 58.0 58.2 58.4 58.6 58.8 59.0 59.2 59.4 59.6 59.8 60.0 0 100 0 10 20 30 40 50 60 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 31.6 31.8 32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4 33.6 33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2 35.4 35.6 35.8 36.0 36.2 36.4 36.6 36.8 37.0 37.2 37.4 37.6 37.8 38.0 38.2 38.4 38.6 38.8 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4 40.6 40.8 41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 43.6 43.8 44.0 44.2 44.4 44.6 44.8 45.0 45.2 45.4 45.6 45.8 46.0 46.2 46.4 46.6 46.8 47.0 47.2 47.4 47.6 47.8 48.0 48.2 48.4 48.6 48.8 49.0 49.2 49.4 49.6 49.8 50.0 50.2 50.4 50.6 50.8 51.0 51.2 51.4 51.6 51.8 52.0 52.2 52.4 52.6 52.8 53.0 53.2 53.4 53.6 53.8 54.0 54.2 54.4 54.6 54.8 55.0 55.2 55.4 55.6 55.8 56.0 56.2 56.4 56.6 56.8 57.0 57.2 57.4 57.6 57.8 58.0 58.2 58.4 58.6 58.8 59.0 59.2 59.4 59.6 59.8 60.0 0 100 21,145.028 20,138.0 27,142.5 38,93.519 49,186.96 28,144.309 33,128.25 27,142.023 10,107.986 35,150.376 31,162.15 38,114.596 17,124.312 11,106.231 15,137.317 25,128.464 12,145.0 23,98.053 38,151.445 19,145.098 10,105.45 9,116.518 60,192.253 23,134.778 37,151.65 15,124.714 31,162.221 15,161.101 23,104.428 15,135.027 16,134.55 45,67.559 20,129.6 10,145.2 21,170.0 11,119.5 11,146.0 11,145.35 19,126.2 7,128.4 39,111.35 20,163.2 18,120.0 33,162.2 2,96.545 5,165.0 17,152.5 17,160.4 40,119.7 22,114.5 33,189.409 18,122.1 22,133.7 9,180.0 19,153.75 10,107.5 30,134.0 23,101.0 22,150.0 5,141.136 11,142.467 14,147.349 25,111.751 20,134.185 24,93.164 19,151.575 18,181.257 19,130.664 16,167.284 8,105.89 19,176.5 16,137.167 21,118.971 9,111.168 12,128.148 26,144.651 27,156.938 28,119.015 27,112.696 14,127.512 5,153.303 23,126.933 25,133.217 26,106.689 14,102.235 7,129.676 20,123.683 38,166.024 25,172.272 37,152.708 14,132.825 18,122.96 20,144.64 16,135.585 28,150.743 19,193.0 3,150.48 23,113.398 34,92.391 19,100.131 45,146.856 2,126.32 36,91.412 17,111.512 31,99.418 12,101.0 31,109.785 21,117.704 9,106.639 11,108.875 28,126.621 25,140.096 19,151.768 28,98.193 15,114.778 19,94.384 38,231.545 27,101.299 2,146.5 31,125.196 21,155.75 9,117.256 4,132.261 8,118.223 20,101.0 3,117.15 18,104.8 18,129.0 20,119.25 45,147.765 23,175.0 41,141.5 39,115.0 16,173.2 18,139.75 15,95.329 25,101.738 19,150.564 30,103.106 19,151.292 19,166.605 18,186.023 36,119.45 15,109.305 27,139.219 9,114.33 21,125.192 44,105.0 23,172.505 38,150.68 26,103.649 19,103.275 26,136.66 7,109.707 20,110.515 31,134.69 30,131.95 10,115.435 40,101.036 43,205.5 30,138.771 15,109.646 11,121.946 14,109.954 35,107.309 40,88.709 6,146.8 35,100.351 19,94.35 9,108.1 7,92.05 15,166.8 28,122.5 31,111.35 44,144.05 4,105.26 13,170.5 16,127.1 36,88.6 43,72.3 11,148.8 18,126.3 36,97.15 7,107.3 9,183.8 28,168.5 7,174.5 27,150.5 27,115.8 43,155.865 51,57.8 27,103.6 38,136.5 46,100.6 18,107.1 27,163.2 48,107.2 6,93.0 18,194.8 40,143.25 7,103.7 44,89.65 10,104.35 43,143.94 30,134.8 35,99.0 31,126.0 26,121.2 45,107.55 30,92.55 22,140.3 7,116.45 12,132.0 8,102.0 39,109.0 7,204.0 23,128.8 18,101.1 23,91.1 11,90.45 23,84.273 23,108.2 37,102.6 30,122.875 6,96.2 40,77.202 25,114.0 17,81.7 19,117.555 19,148.75 27,91.0 38,133.9 11,88.175 20,122.4 35,87.8 11,106.608 18,152.664 14,105.668 14,108.262 18,136.0 25,168.635 57,76.84 30,113.278 26,155.5 49,78.162 22,96.614 22,97.262 32,124.309 14,115.313 36,117.515 29,148.5 9,120.806 0,105.0 37,104.279 16,112.429 31,131.205 28,113.543 23,134.885 8,106.294 19,113.068 30,93.904 31,102.58 26,89.565 36,137.0 23,124.75 34,103.45 0 50 100 150 200 250 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 0 250 Male Female Salary
using DataFrames, Gadfly
set_default_plot_size(14cm, 8cm)
x = range(0.1, stop=4.9, length=30)
D = DataFrame(x=x, y=x.+randn(length(x)))
p = plot(D, x=:x, y=:y, Geom.point,
  layer(Stat.smooth(method=:lm, levels=[0.90,0.99]), Geom.line, Geom.ribbon(fill=false)),
     Theme(lowlight_color=c->"gray", line_style=[:solid, :dot])
)
x 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 0 5 4.96.631090391647861 4.734482758620695.066086528811177 4.5689655172413795.609631415042641 4.4034482758620692.978507868064252 4.23793103448275855.455740571241266 4.0724137931034483.9852399569472987 3.9068965517241382.734988932595699 3.74137931034482742.838490010093868 3.5758620689655172.0906470084434403 3.4103448275862074.056501325888056 3.24482758620689672.797357588796709 3.0793103448275863.2090227386334593 2.9137931034482763.4626171324681927 2.74827586206896562.284481031092637 2.58275862068965533.9397380305346683 2.41724137931034471.4612513243678766 2.25172413793103443.4735120893328846 2.0862068965517240.5246289054909075 1.92068965517241370.997503212778759 1.75517241379310352.5842669378674685 1.5896551724137931.4504400808353632 1.42413793103448282.4157363486894994 1.25862068965517242.152708145435948 1.09310344827586212.4203181125855364 0.92758620689655170.7500129361442378 0.76206896551724132.064553997791261 0.5965517241379310.43545259681447346 0.43103448275862066-2.2441493197847717 0.2655172413793103-0.37138797002961077 0.1-0.00378042408790491 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? -2.5 0.0 2.5 5.0 7.5 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 -2.50 -2.45 -2.40 -2.35 -2.30 -2.25 -2.20 -2.15 -2.10 -2.05 -2.00 -1.95 -1.90 -1.85 -1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40 -1.35 -1.30 -1.25 -1.20 -1.15 -1.10 -1.05 -1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20 6.25 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 6.90 6.95 7.00 7.05 7.10 7.15 7.20 7.25 7.30 7.35 7.40 7.45 7.50 -2.5 0.0 2.5 5.0 7.5 y

Stat.step

using Gadfly, Random
set_default_plot_size(14cm, 8cm)
Random.seed!(1234)
plot(x=rand(25), y=rand(25), Stat.step, Geom.line)
x 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 y

Stat.unidistribution

using DataFrames, Gadfly, Distributions
using Gadfly: w,h
set_default_plot_size(21cm, 8cm)
D = DataFrame(Dist=["Prior", "Posterior"],
    Density=[Normal(-0.22, 0.02), Normal(-0.29, 0.015)])

xcoord = Coord.cartesian(xmin=-0.4, xmax=-0.1)
gck = Guide.colorkey(title="", pos=[0.5w, -0.4h])
p1 = plot(D, y=:Density, color=:Dist, Guide.title("color=:Dist"), gck,
    layer(Stat.unidistribution, Geom.line, Geom.ribbon, alpha=[0.8]), xcoord)
p2 = plot(D, y=:Density, color=:Dist, layer(Stat.unidistribution, Geom.line),
    layer(Stat.unidistribution([[0.0001, 0.05], [0.95, 0.9999]]), Geom.ribbon),
    Guide.ylabel(nothing), Guide.title("color=:Dist"), gck)
p3 = plot(D, y=:Density, group=:Dist, xcoord, gck,
    layer(Stat.unidistribution([[0.0001, 0.1],[0.1, 0.9], [0.9, 0.9999]]), Geom.ribbon, alpha=[0.8]),
    Scale.color_discrete_manual("orange", "yellow", "coral"), Theme(lowlight_color=identity),
    Guide.title("group=:Dist"), Guide.ylabel(nothing)
)
hstack(p1, p2, p3)
-0.4 -0.3 -0.2 -0.1